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Individual-based models of infectious disease transmission depend on accu-

rate quantification of fine-scale patterns of human movement. Existing

models of movement either pertain to overly coarse scales, simulate some

aspects of movement but not others, or were designed specifically for popu-

lations in developed countries. Here, we propose a generalizable framework

for simulating the locations that an individual visits, time allocation across

those locations, and population-level variation therein. As a case study, we

fit alternative models for each of five aspects of movement (number, distance

from home and types of locations visited; frequency and duration of visits) to

interview data from 157 residents of the city of Iquitos, Peru. Comparison of

alternative models showed that location type and distance from home were

significant determinants of the locations that individuals visited and how

much time they spent there. We also found that for most locations, residents

of two neighbourhoods displayed indistinguishable preferences for visiting

locations at various distances, despite differing distributions of locations

around those neighbourhoods. Finally, simulated patterns of time allocation

matched the interview data in a number of ways, suggesting that our frame-

work constitutes a sound basis for simulating fine-scale movement and for

investigating factors that influence it.
1. Introduction
The importance of mathematical modelling of human movement is far ranging,

as movement patterns underlie key issues in public health, economics and

urban planning [1,2]. Different questions in each of these arenas, however,

necessitate the selection—and sometimes the development—of models with

different levels of spatial and temporal resolution.

In infectious disease epidemiology, describing average flows of movement

between cities is informative of the spread and persistence of pathogens over

broad geographical areas [3–5]. At more local scales, such as within a city,
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movements by smaller groups must be acknowledged to cap-

ture structure relevant to the dynamics of transmission [6–9]

and the uniqueness of exposures of those different groups

[10]. Different types of movement over different time scales

must also be considered. Migratory and seasonal movements

are likely important for circulation over broad regions and

time scales, whereas commuting patterns and other routine

movements give rise to the structure of contacts on which

epidemics spread [1,11].

For modelling movement at fine spatial scales, such as

within cities, many models (e.g. [12–14]) focus on scales no

finer than several hundred square metres, or the area covered

by a mobile phone tower, because that represents the finest

scale at which an individual’s presence can be deduced

with mobile phone call records. In certain locations, however,

data informative of an individual’s whereabouts at finer

scales could be used to motivate and parametrize models at

the scale of buildings or lots [15,16]. An existing conceptual

framework for modelling movement at this scale is that of

an individual’s activity space, which is defined as ‘the

subset of all urban locations with which the individual has

direct contact as the result of day-to-day activities’ [17].

Modelling the composition of activity spaces and move-

ment within them is essential for any simulation of synthetic

human populations in an urban environment. Such simu-

lations are of high utility for a number of applications in

infectious disease epidemiology, including planning for the

containment of influenza or smallpox outbreaks [18–21] and

evaluating the efficacy of a putative dengue vaccine [22,23].

Although these and other applications are of relevance to

cities in the developing world, the development of algorithms

for simulating the composition and dynamics of activity spaces

has focused primarily on cities in North America and Europe.

Furthermore, simulation models of human activity spaces typi-

cally focus on details that, while important for applications in

transportation [24], may be unnecessarily complex for appli-

cation to the epidemiology of many infectious diseases [15].

Still other models are capable of simulating movement and

time allocation within an activity space (e.g. [25,26]), but pro-

vide no basis for simulating which locations comprise the

activity space. A generalizable framework that can be parame-

trized with readily attainable data and that can be used to

simulate activity space composition and time allocation in a

variety of geographical contexts is therefore needed.

To address this need, we developed a modelling framework

that integrates five distinct aspects of movement—i.e. number

of locations in the activity space, location type and distance

from home of locations in the activity space, and frequency and

duration of visits to those locations—to generate a cohesive

description of time allocation within an individual’s activity

space. This framework allows for simulation of locations compris-

ing the activity space and parameters that govern a stochastic

process of movement between pairs of locations within the

activity space. Together, this results in a description of how

the individual allocates time across the activity space. To demon-

strate the utility of this framework, we fit a model of activity space

composition and time allocation to data from retrospective inter-

views of 157 residents of the city of Iquitos in northeastern Peru.

Using these data, we selected among candidate models with

varying levels of detail about location type and distance from

home, and we used simulations of the best-supported model

(e.g. figure 1) to assess the model’s ability to reproduce empirical

patterns of time allocation in the study population.
2. Material and methods
2.1. Modelling framework
2.1.1. Activity space composition
The first mathematical characteristic of an individual’s activity

space that we define is that it is comprised of locations belonging

to m different classes, each of which is distinguished by how long

locations of that class tend to remain in the individual’s activity

space. For example, many people likely have some locations that

they visit routinely (e.g. relatives’ houses) as well as some that

they do not visit as a matter of routine (e.g. repair shops, air-

ports). We posit that routine locations remain in one’s activity

space for long periods of time, whereas irregular locations

come and go from the individual’s activity space over time.

Each such class i is defined by a constant rate li at which new

locations are added to it and a constant rate mi at which a location

of that class is removed from the activity space (figure 2a). If we

assume that locations in each class are removed from the activity

space in the same order in which they were added to it, then each

class within an individual’s activity space can be modelled as a

queue (of M/M/1 type [27]). This convenience means that we

can directly calculate some key characteristics of the dynamics

of each class, including the stationary distribution of the

number of locations of each class in the activity space (geometric

with parameter ri ¼ 12li/mi) [27, pp. 548–552]. The stationary

distribution of the number of locations across all classes in the

activity space is thus a sum of m geometric random variables.

In the event that m is finite, the stationary distribution of activity

space size follows a negative binomial distribution with par-

ameters m and r if all ri ¼ r. If there is a very large number of

classes (i.e. as m!1), the stationary distribution of activity

space size is a Poisson distribution with parameter mr. Finally,

in the trivial case with only a single class, the stationary distri-

bution of activity space size is geometrically distributed with

parameter r.
2.1.2. Time allocation within the activity space
Because there is potential for locations to be added to or remo-

ved from the activity space at any time, we complement the

continuous-time process of activity space turnover with a continu-

ous-time process of movement by an individual within her or his

activity space. A simple and general way to model this movement

process is with a continuous-time, finite-state Markov process

(figure 2b), similar to how geographers have modelled trip behav-

iour [28,29]. Under such a formulation, the set of n locations in an

individual’s activity space comprise the states among which an indi-

vidual moves about according to the n � n rate matrix Q [27, p. 396].

Each off-diagonal element qi,j of Q represents the instantaneous prob-

ability that an individual moves from location i to location j, and

the elements of this matrix are stipulated to satisfy the condition

that qi,i¼2
P

j=i qi,j. Characteristics of a movement process obeying

these dynamics include that the durations of visits to each location i
are exponentially distributed with mean 21/qi,i and that the station-

ary distribution p, which is a vector containing the long-term

average proportion of one’s time spent at each location, satisfies

pQ¼ 0 [27, pp. 395 and 398].
2.2. Model refinements
Applying this framework to specific populations requires speci-

fying which locations are included in an individual’s activity

space and how an individual spends time at and moves among

those locations. Here, we investigated two primary character-

istics of locations—location type and distance from home—that

affect whether individuals visit those locations and if so how

frequently and for how long they visit (table 1).
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Figure 1. Example of an individual’s activity space and the proportion of the individual’s time spent at each location, simulated with the fitted model. (Online
version in colour.)
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Figure 2. Model schematic. (a) Snapshot of an individual’s activity space at a given point in time, with the individual’s home on the bottom, a relatively permanent
class above it, an intermediate class above that, and a relatively transient class at the top, with classes separated by thick lines. The composition of each class is
governed by an M/M/1 queue with ‘birth’ rate li and ‘death’ rate mi. Different colours indicate different location types (e.g. houses, shops, parks), which are distinct
from the permanent, intermediate and transient location classes. (b) An individual’s whereabouts over time, with a single example in black and 500 replicates in
faint colours. On average, the overall proportion of time spent at each location tends to the distribution p. (Online version in colour.)
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2.2.1. Location types
Given some way of classifying locations according to T types,

such as residential or commercial, we propose that whenever a

new location is added to one’s activity space it has a probability

pt of being a location of type t, where
P

pt ¼ 1. Consequently,

the number of locations of each type in an activity space com-

prised of n locations is a multinomial random variable with

parameters n and p ¼ { pt1
, . . . , ptT }. These location types are

not necessarily the same as the location classes. Rather, we

envision location types as readily distinguishable based on

observable characteristics (e.g. houses, schools) and location

classes as defined solely by the extent of their transience in
one’s activity space (e.g. a workplace and a market could

belong to the same class).
2.2.2. Distance from home
We also consider the possibility that individuals tend to display a

preference for locations that are closer to their homes. To investi-

gate this possibility, we must first consider how far away

locations of a certain type are from one’s home. If an individual

chooses locations randomly with respect to distance from home,

then distances at which more locations of a given type are pre-

sent would be more likely to be chosen. Thus, we must first



Table 1. Summary of model components, model subcomponents and how variation in each is represented probabilistically in the best-supported model.

model component model subcomponent probability distribution

locations visited number of locations negative binomial (r, r)

locations of a given type multinomial ( pt)

locations of a given distance / pdf(d; t) . exp(2mtd
ht)

time allocation frequency of visits lognormal (m(d; ad,t, bd,t, cd,t), sd,t)

duration of visits lognormal (m(d; af,t, bf,t, cf,t), sf,t)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140642

4

account for the distribution p(d; t) of locations of type t at various

distances d and then determine whether the realized distribution

of locations visited is weighted in favour of those closer to home.

We do so with a weighting function of the form

exp(�mtd
ht ), (2:1)

which is similar to an exponential distribution with rate m but

with an additional parameter h to allow for more flexibility to

weight locations very close to home more strongly. Once the dis-

tance from home of a new location is determined, we select a

specific location randomly from all locations of a given type t

at that distance. We furthermore consider the possibility that

different location types have different weighting functions, as

determined by the parameters mt and ht.
2.2.3. Time allocation
To determine how individuals allocate time across locations in

their activity spaces, we assign each individual a frequency of

visits, fi, and a mean duration of each visit, di, to each location

i in the activity space. The collection of all fi and di for

i [ 1, . . . , n is then used to populate the matrix Q. Because the

diagonal entries of Q are directly related to the mean duration

of visits to each location, these entries are defined simply as

qi,i ¼21/di. To populate the off-diagonal entries of Q, which

describe movements between locations, we herein make the

simplifying assumption that consecutive movements are uncor-

related and proportional to the frequency at which an

individual visits each location, such that

qi,j ¼
1

di

fj
P

j=i fj
: (2:2)

To select fi and di for different individual–location pairs, we

model these parameters as bivariate normal random variables

on a natural log scale with means mf,t and md,t, standard devi-

ations sf,t and sd,t, and correlation rt. Moreover, we consider

the possibility that the means and standard deviations differ

for different location types and that the means depend on

distance from home according to the function

m(d) ¼ 1

2
aþ ab exp(cd)

1þ exp(cd)
: (2:3)

This function is defined such that the mean frequency or duration of

visits on a natural log scale to a location of a given type t approaches

(1/2)a(1 þ b) near home and (1/2)a as cd! 21. Finally, we assume

that the frequency and mean duration of visits to one’s own home

and to locations outside the city are also jointly distributed lognor-

mal random variables but that they are characterized by their own

parameters, which do not depend on d.
2.3. Data
The data used to fit the model were collected in the Amazonian

city of Iquitos, Peru. Iquitos is an isolated city of approximately

377 000 inhabitants surrounded on three sides by rivers. Only

one regional road leaves the city, meaning that most local
travel outside the city takes place by boat. Besides walking

short distances, movement within the city typically occurs by

motorcycle, motorcar or bus. Neighbourhoods within the city

vary in the availability of services and quality of construction.

Most contain key services (schools, health centres, markets),

but specialized commerce and other services are concentrated

in specific areas of the city (e.g. two main hospitals, a shopping

district in the downtown area). Participants in this study lived in

either of two neighbourhoods (electronic supplementary material,

figure S1), Maynas and Tupac Amaru, which exhibit modest differ-

ences in housing construction and population density [30]. These

neighbourhoods were initially chosen for other studies because

they are mostly self-contained (having schools and health centers)

and are distant enough to limit inter-neighbourhood movement

[9,30]. Historically, dengue virus transmission and mosquito

densities have been higher in Maynas [31].

2.3.1. Geographical information system
Construction of a geographical information system (GIS) for the

city of Iquitos began in 1998 [32] and was ongoing at the time of

this study [30,31,33]. We used coverages that encompassed nearly

50 000 lots using the coordinate system Universal Transverse

Mercator WGS-84 Zone 18S. In areas with ongoing epidemio-

logical and entomological research projects, field personnel

assigned location types to each lot. It should be noted though that

many sites were mixed use; e.g. residential and commercial in

many cases. During the retrospective interview study, unmap-

ped locations were physically located to obtain Geographical

Positioning System coordinates and to update the GIS.

2.3.2. Retrospective interviews
Retrospective interviews were conducted using a semi-structured

interview (SSI) [34,35]. The SSI was developed to address the

issues of recall, reliability, reproducibility, compliance, behaviour-

al change and privacy that are typically associated with classic

movement survey methods, such as interviews, diaries or direct

observation. This tool was designed for use with people who

became infected with dengue or who were in shared spaces with

people who had become infected with dengue (potential future

dengue cases), to find out where they had been in the past two

weeks (to identify potential exposure sites). Hence, we were

limited to methods that could be applied retrospectively. Based

on focus groups conducted to develop the SSI, we found that:

(i) people could identify routine locations they visit, but triggers

were needed for certain types of locations, (ii) the best aid for recal-

ling locations visited was to begin the SSI by thinking about a

‘typical day’ and to gradually add memory triggers over the

course of the interview, and (iii) there were clear ‘common activity

spaces’ identified for all. During the development and validation

of the SSI, we found that high-resolution satellite imagery of par-

ticipants’ neighbourhoods, combined with street labels, was not

very useful in triggering recall of locations, but aided participants

in describing and locating where they had been. If participants

were unable to find a location on the map, they would either call

someone at the location to ask for the address, or give our research



Table 2. Summary of candidate models for each model subcomponent.

model subcomponent candidate models

number of locations geometric, Poisson, negative binomial

locations of a given type all possible location type groupings in which types within a group have identical probabilities of being found in an

activity space

locations of a given

distance

all possible location type groupings in which types within a group have identical effects of distance from home, which

depend on either one or two parameters per location type grouping

frequency of visits all possible location type groupings in which types within a group have identical effects of distance from home or no

effect of distance from home. Zero or non-zero correlation with duration of visits

duration of visits all possible location type groupings in which types within a group have identical effects of distance from home or no

effect of distance from home. Zero or non-zero correlation with frequency of visits

time at home zero or non-zero correlation between frequency and duration of times at home
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team the best description they could. Our research team would

then find the location and record its position. The SSI followed

with a section on common activity spaces already identified by

others (e.g. schools, markets, health facilities). The SSI concluded

with a section that listed categories of locations that tended to

require triggers to be recalled or else would otherwise likely go

unreported. The result of each interview was a list of the locations

that an individual visited in the two-week period preceding the

interview, as well as estimates of the frequency and duration of

visits to each location.

A total of 120 participants provided information about time

spent at home, 138 about time spent elsewhere and 101 of 157 pro-

vided information about both. These interviews were conducted

with residents of two neighbourhoods (electronic supplementary

material, figure S3), from which study participants were obtained

by convenience sampling and are thus not completely representa-

tive of the local population in terms of age, sex, occupation and

possibly other factors; they are nonetheless diverse (electronic

supplementary material, figures S2–S4). Interviews were mostly

conducted during the dengue transmission season (electronic

supplementary material, figure S5), which spans several months,

as well as variation in seasons that could impact movement

behaviour (e.g. times when children are in or out of school).
2.4. Analysis
2.4.1. Model fitting and selection
The first aim of our analysis was to fit and select among candi-

date models for each of the five aspects of movement. For

example, candidate models that we considered for the distri-

bution of the number of locations visited included geometric,

Poisson and negative binomial distributions. Candidate models

for all aspects of movement are listed in table 2. For each

aspect of movement, each candidate model was fitted separately

to the interview data by numerically estimating maximum-

likelihood parameter values. To compare a pair of models with

nested parameters, we performed a likelihood ratio test and

selected the more complex model if p , 0.05. For situations

with more than two candidate models, we assessed the relative

support for each by computing each model’s Akaike information

criterion corrected for finite sample size (AICc), which balances

goodness of fit and model complexity, and then Akaike weights,

which are a measure of relative support [36].

To explore the set of possible models with different levels of

detail about location type, we employed a form of backward

elimination. To do so, we first fitted the candidate model with

the finest breakdown of location types that we considered,

such that each location type had its own set of parameters. We
then chose the pair of location types with the most similar par-

ameter values and fitted a new model in which the parameters

of those two location types were constrained to be equal. Repeating

this procedure of agglomerating location types based on parameter

similarity, we obtained a set of candidate models with a range of

location-type categorizations, from the case in which each location

type had its own parameter values to the case in which all loca-

tion types had the same parameter values. Additional details of

the model selection procedure specific to different aspects of move-

ment are elaborated on in the electronic supplementary material,

table S2.

For all aspects of movement, we also fitted models separately

to interviews of residents of two distinct neighbourhoods in

Iquitos to assess the robustness of our fitted model to possible

neighbourhood-specific differences (which have been found else-

where [37]). In doing so, we applied the same model selection

procedures as described above, and we assessed support for

either the aggregated model (denoted MMþT) or the disaggre-

gated model (MM þMT) by DAICc . 10 (as recommended for a

pair of non-nested models [36, p. 123]).

2.4.2. Comparison of model outputs against data
To assess the realism of patterns of time allocation simulated

with our model, we compared simulation results against patterns

of time allocation derived directly from the retrospective inter-

views. Although data from these interviews were also used to

parametrize the model, the model’s ability to reproduce patterns

of individual time allocation does not necessarily follow, because

the features of the interview data with which the model was

parametrized are distinct from those against which model out-

puts were compared. This comparison therefore allowed us to

assess the model’s ability to translate basic aspects of movement

into descriptions of time allocation across locations, which is

the objective of the model and a goal that is common to many

applications in epidemiology and other fields.

To that end, we first calculated the empirical pattern of time

allocation within each individual’s activity space. For the same

number of individuals as participated in retrospective interviews

of time spent at home and elsewhere (n ¼ 101), we simulated

patterns of time allocation 103 times (e.g. figure 1). Given these

empirical and simulated patterns of time allocation, we then

examined (i) the proportion of individuals that allocated a

certain proportion of their time at a single location of each

location type as well as at their home and (ii) how time allocation

was distributed over distance from home.

Our quantitative approach to the comparison of simulated and

empirical patterns of time allocation was based on that of statistical

hypothesis testing. For a given statistic (e.g. proportion of time
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allocated at a distance of 1 km from home), the set of simulated

values of that statistic comprised the null distribution against

which the empirical value was compared. Formally, and assuming

a two-tailed test, if the empirical value of a given statistic fell

between the 2.5th and 97.5th percentiles of this null distribution,

then our interpretation was that we could not reject the possibility

that the empirical value was generated by the process codified by

our model. Informally, given that any single statistic that we con-

sidered fell along a continuum of related statistics (e.g. distances

from home of 100 m, 200 m, etc.), we found it instructive to visu-

ally compare how well the entire set of empirical statistics

tracked the set of simulated statistics.
3. Results
3.1. Model fitting and selection
3.1.1. Activity space composition
Among the three distributions that we considered, we found

clear support for the negative binomial (Akaike weight � 1,

table S3, figure 3). This result is consistent with the hypoth-

esis that activity spaces comprised m ¼ 12 classes each with

identical parameter r ¼ 0.4997, or, alternatively, that activity

space size was Poisson distributed with variation among

individuals’ parameters that was gamma distributed with

hyperparameters equal to r and r/(1 2 r).

We found support for uneven representation of location

types within individuals’ activity spaces, with the best-

supported model being those in which there were six distinct
location-type groups, and with models with between five and

nine such groups having nearly all Akaike weight (table S4).

The best-supported model assigned 34% of locations as com-

mercial, 25% as residential, 12% as recreational and others at

less than 10% each (figure 3). All models with some fitted

vector p fit the data better than a model in which p equalled the

proportions of locations of each type within the city (table S4),

which represented the hypothesis that locations were chosen

irrespective of type.

For each location type that we considered, there was a dis-

tinct effect of distance from home on its inclusion in one’s

activity space, as the model with separate parameters for each

location type had an AICc value 49 lower than the next best

model (table S5). For locations in the recreation or others cat-

egories, individuals were more likely to visit locations of an

intermediate distance from home (approx. 0.522 km) than

they were locations nearby or far away (figure 4). For all other

location types, individuals were less likely to visit locations

farther from home, with this effect being particularly strong

for locations in the residential, commercial, education and

institutions categories (figure 4). These different relationships

for different location types are likely attributable to aspatial con-

siderations, given that we accounted for the spatial distribution

of each location type relative to study participants’ homes.
3.1.2. Time allocation
The frequency and mean duration of visits to home were

best described by a bivariate lognormal distribution with
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an average frequency of 2.79 times per day, an average mean

duration of 4.2 h per visit (between the hours of 5.00 and

22.00), and a significant negative correlation between

those quantities (r ¼ 20.59; likelihood ratio test: x2
1 ¼ 51:8,

p ¼ 6.2e 2 13) (figure 5).

For locations other than home, one attribute that we found

to affect both the frequency and mean duration of visits

was location type. Comparing models of the frequency and

mean duration of visits with different numbers of location-

type groups, we found strong support for the model with the

most detailed representation of location types (Akaike

weight ¼ 0.99, table S6). For each of those location types, we

also found differences in how frequencies and mean durations

of visits to locations of those types were affected by distance

from home and by a correlation between those quantities.

Distance from home had a significant effect only for residential

and commercial location types (Akaike weights � 1, table S7),

with the frequency and mean duration of visits decreasing and

increasing, respectively, with increasing distance from home.

Statistical support for a correlation between the frequency

and mean duration of visits to locations of each type was

only evident for the education and institutions location types

(Akaike weights . 0.95, electronic supplementary material,

table S6), which had correlations of 0.27 and 0.49, respectively

(electronic supplementary material, table S8).

The frequency and mean duration of visits outside the

city were best described by a bivariate lognormal distribution

with an average frequency of once per 6.4 days, an average

mean duration of 4.4 h, and no correlation between those

quantities (likelihood ratio test: x2
1 ¼ 2:56, p ¼ 0:11) (figure 5).
3.1.3. Neighbourhood comparison
Applying our model fitting and selection procedures

separately to interviews from residents of two distinct neigh-

bourhoods, we found strong statistical support for the

disaggregated neighbourhood model (MM þMT) over the

aggregated model (MM þ T) only for the model subcomponent

concerning the effect of distance from home on inclusion in the

activity space (DAICc ¼ 59.24, table S9). Performing a similar

comparison of MM þMT and MM þ T by location type

(table S10), we found statistical support for differences in

the effect of distance from home only for the recreation

(DAICc ¼ 34.86), institutions (DAICc ¼ 11.66) and others

(DAICc ¼ 13.64) location types (figure 4).

3.2. Comparison of model outputs against data
Both empirical and simulated data displayed wide variation

in the proportion of time that individuals spent at home

(figure 6). However, the fitted model tended to predict that

very few people spent a majority of their time at home. For

locations other than home, simulated patterns of time allocation

were consistent with the empirical pattern that most people spent

relatively little time at any single location (i.e. 10% or less). The

most significant departures from this pattern in the empirical

data were that approximately 10% of study participants who vis-

ited an educational location or a location outside of Iquitos spent

significantly more time at those locations (approx. 20230%) than

was exhibited in the simulated data. For location types that were

relatively infrequently included in one’s activity space (i.e. health,

institutions, religion, others), the empirical pattern of very few
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individuals spending a significant amount of their time at a single

location of one of those types was consistent with individual

replicates of the simulation (figure 6).

Simulated data also captured some patterns of time allo-

cation over a range of distances from home but were deficient

in other ways. One of the primary deficiencies of the simu-

lated data was that they under-predicted the proportion

of time allocated within 100 m of an individual’s home

(figure 7). That time was instead allocated elsewhere, thereby

shifting the simulated patterns of time allocation at distances

beyond 100 m above the empirical pattern at those distances.

The simulated data captured the mean pattern of time allo-

cation between distances of approximately 100 m to 5 km
relatively well otherwise, but they appeared to under-

represent the variability in time allocation at different

distances (i.e. the simulated patterns were relatively smooth

compared with the empirical pattern). The simulations also

somewhat over-predicted time allocated beyond 5 km, but

in individual replicates this discrepancy was not as severe

as it appeared in the ensemble. Examining the mean distance

from home of where time was allocated (figure 7, green) and

the mean distance of locations visited (figure 7, blue), it

appeared that over-predicting the distance from home at

which time was allocated resulted from both over-predicting

the distance of locations that were visited and over-predicting

the frequency and duration of visits to faraway locations.
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4. Discussion
We developed a new mathematical framework for simulating

movement of individual people at fine spatial scales in an

urban environment. This framework has advantages over

existing alternatives in that it is specified at the scale of individ-

ual buildings or lots, it allows for a priori simulation of both

where individuals go and how they allocate their time, and it

can be fitted to a variety of data sources about human move-

ment at fine scales. It is also more general than other

simulation models of fine-scale urban movement that are struc-

turally sensitive to details of specific locations. Instead, our

framework represents a minimal model for realistically simu-

lating patterns of individual time allocation, yet it is based on

conventional mathematical tools that make it readily extensible

for various applications where additional detail is warranted.

As a case study for this new framework, we fitted candidate

versions of such a model, each with a different level of detail, to a

set of 157 interviews of residents of Iquitos, Peru. In doing so, we

found that location type and distance from study participants’

homes were important factors in determining which locations

comprised their activity spaces and how they allocated time

across those locations. Simulations of the best-supported model

provided a realistic description of aggregate patterns of time allo-

cation, thereby validating the utility of this framework for its

intended purpose of realistically simulating activity spaces and

time allocation therein for a synthetic population. The attainment

of this best-supported model thus represents a significant

advance in realistically simulating fine-scale human movement

in Iquitos, where empirical and modelling studies of dengue

virus epidemiology are ongoing, and a starting point for simulat-

ing fine-scale human movement in other resource-poor urban

environments. The availability of our code at https://github.

com/TAlexPerkins/ActivitySpace_JRSI2014 should facilitate

adaptation of the model to other cities and extension of the

model around additional complexities that other datasets may

be well suited to address.
4.1. Interpretations of model and results
4.1.1. Activity space composition
Our framework posits that activity space composition is

dynamic and that different classes of locations within the
activity space turn over at different rates. Currently, we

are unable to examine this process of turnover empirically,

because we do not possess data appropriate for doing so. Ide-

ally, data to address this question would consist of records of

when individuals started and stopped visiting locations over

a span of months or even years. Nonetheless, positing such a

process provides us with a set of first principles from which

to derive candidate models for the distribution of the total

number of locations that one visits on a time scale that is

short relative to that of activity space turnover. By comparing

three theoretically motivated candidate models, we found

support for a negative binomial distribution of this quantity.

Even for applications in which our model is not used in its

entirety, knowledge of the distribution of the number of

locations visited should be useful for informing realistic

degree distributions for network models [38,39].

Another aspect of activity space composition that our frame-

work accounts for is that some location types appear in activity

spaces in proportions much greater (or smaller) than their rep-

resentation in the city. Indeed, we found clear support for this

hypothesis in Iquitos, with 71% of the locations that study par-

ticipants frequented belonging to the commercial, residential,

or recreational location types. An implication of this result is

that models that do not incorporate information about location

types may miss important aspects of the structure of human

movement at intra-urban scales. Although the importance of

location types has been recognized in the time-space geography

literature, models of human movement developed for coarser

scales (e.g. [40,41]) generally ignore information about location

types and may therefore perform poorly when applied at

increasingly finer scales where location-type composition is

highly heterogeneous. Incorporating information about location

types depends not only on the details of a model, however, but

also on the availability of comprehensive and reliable spatial

data, which in many cases will either not be available or will

have some uncertainty about location type designation.

Although such information may not be widely available at pre-

sent for many cities and countries, it is becoming increasingly

available where research programmes are ongoing and is

likely to become increasinglyso in coming years, given advances

in satellite image processing [42]. For certain applications in epi-

demiology, this information will be indispensible, as risk is

greater at some location types than others [43–45].

https://github.com/TAlexPerkins/ActivitySpace_JRSI2014
https://github.com/TAlexPerkins/ActivitySpace_JRSI2014
https://github.com/TAlexPerkins/ActivitySpace_JRSI2014


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140642

10
We also found a clear effect of distance from home on the

probability that a location was included in one’s activity

space. As a result, networks of co-location or contact generated

by a process such as the one described herein have a distinct

spatial dimension, which has a number of implications for net-

work topology and for the spread of infectious diseases on such

networks [46,47]. Importantly, for seven of the 10 location types

we considered, study participants from two geographically dis-

tinct neighbourhoods possessed statistically indistinguishable

values of the parameters that govern the effect of distance

from home on inclusion of a location in one’s activity space.

This suggests that differences in the spatial distribution of

locations within and around a neighbourhood, rather than

possible social or economic differences, drive differences in

the realized distributions of distances over which activity

space locations of these seven types are found. One implication

of this result is that realized distributions of locations visited

may not be comparable across different spatial contexts, as

those differences could reflect differences in the distribution

of locations rather than differences in the underlying move-

ment process. On the other hand, this result suggests that the

capacity of a model like ours to extrapolate to other neighbour-

hoods in Iquitos, and perhaps elsewhere [48], appears

promising provided that comprehensive spatial data on

location types are available.
4.1.2. Time allocation within the activity space
Location type was also a major factor in determining how

much time individuals spent at locations in their activity

spaces. Distance from home, on the other hand, only had an

impact on the frequency and mean duration of visits to

locations in the residential and commercial categories. These

results again highlight the value that spatial data on location

types can add to simulations of individual activity spaces,

although a number of refinements could still be made to

improve the model’s capacity to simulate activity spaces

that are more quantitatively consistent with empirical data.

Indeed, accurately quantifying heterogeneity in the time that

individuals spend at locations has the potential to affect fore-

casts of epidemic behaviour and predictions about the

conditions under which a disease will persist [49].
4.2. Model limitations and extensions
One important extension of the framework will be identifying

how differences in individual attributes such as age, sex and

occupation can be used to deterministically account for vari-

ation in the movement behaviours of different individuals—

for which there is evidence in our study population [9]. Our

goal here, however, was not to describe every possible detail

that could affect human movement, but to develop a math-

ematically cohesive description of how five distinct aspects

of movement combine to generate patterns of time allocation.

Rather than predicting the whereabouts of a single individ-

ual, the most reasonable use of our fitted model in its

present form is the simulation of patterns of time allocation

aggregated over many individuals in a synthetic population.

Indeed, our model is suited for this purpose because it expli-

citly accounts for variation in movement behaviours among

the diverse individuals in the study population. In appli-

cations in which certain attributes are of particular interest

(e.g. age in transmission models of immunizing pathogens),
model parameters could be specified as functions of those

variables and fitted to data.

Although our results clearly show that location type and

distance from home are important determinants of activity

space composition, the reality is that other factors likely play

a role, too. One such factor that we have omitted is the existence

of correlations between locations visited by cohabitants or

members of certain social groups [50,51], which are likely to

be of importance to the transmission of many infectious dis-

eases [52–54]. We also assume no spatial correlation among

locations in one’s activity space. One factor that probably gen-

erates such patterns is that locations other than home, such as

the workplace, could serve as anchor points for making choices

about other locations to visit [55]. Extending our methodology

to account for this phenomenon is possible, but doing so will

require empirically discerning (i.e. adapting the SSI) and stat-

istically describing (i.e. identifying associated factors and

quantifying variation) which locations serve as anchor points

and which are chosen secondarily. One approach to describing

which locations act as anchor points could involve gathering

data on which location types tend to be visited following

visits to other location types, with likely anchor points being

location types frequently visited following time at home [56,

figs 5.7 and 5.15]. The choice of locations visited secondarily

to those anchor points might then be better informed by dis-

tance from the anchor than by distance from home. It also

may be worthwhile to consider differences in the identities of

anchor locations for individuals of different ages, occupations,

etc., as well as whether certain types of locations tend to be

associated with anchor locations of certain other types.

For applications in which sequences of movements, or ‘trip

chains’ [57], are of interest, the movement process we assume

could benefit from a number of elaborations. As much of

time-space geography is concerned with such sequences

rather than with aggregate distributions of time, a wealth of

factors have been proposed that could be incorporated into

our framework. Examples include elements of the Q matrix

that are specific in various ways to different origin–destination

pairs [58], an increased probability of returning home with

increasing trip length [59], and elements of Q that depend on

day of week [60] or time of day [61]. Given a proposal for a

more detailed formulation of Q, existing theory of Markov pro-

cesses could be used to calculate likelihoods of parameter

values given data on sequences of movement. Such realistic

accounting of trip chains could also allow for consideration of

time in motion between locations, which is of specific interest

in some applications and of implicit interest in others vis-à-

vis the fact that time in motion reduces time spent at locations

in the activity space.

The study protocol for research with human subjects was approved by
the University of California at Davis (Protocol 2007–15244) and Naval
Medical Research Unit No. 6 (NAMRU-6 Protocol NMRCD.2007.0007)
Institutional Review Boards (IRBs) in compliance with all US Federal
and Peruvian regulations governing the protection of human subjects.
The NAMRU-6 IRB included Peruvian representation and was regis-
tered with the Peruvian Regulatory Agency for Clinical Trials with
the number RCEI-78. IRB authorization agreements were established
between the University of California at Davis and the University of
Illinois at Urbana–Champaign, Emory University, and San Diego
State University and between the NAMRU-6 and Tulane University.
The protocol was reviewed and approved by the Loreto Regional
Health Department, which oversees health research in Iquitos.
A strict protocol for data storage (in a secure MySQL database) and
management was followed.
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Ferguson NM. 2008 Estimating the impact of school
closure on influenza transmission from Sentinel
data. Nature 452, 750 – 754. (doi:10.1038/
nature06732)

45. Kestens Y, Lebel A, Chaix B, Clary C, Daniel M,
Pampalon R, Theriault M, Subramanian SVP,
Miranda JJ. 2012 Association between activity space
exposure to food establishments and individual risk
of overweight. PLoS ONE 7, e41418. (doi:10.1371/
journal.pone.0041418)
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